

BOTHRA ENTRANCE AND SCHOLARSHIP TEST

Class XI Studying Moving to Class XII

Physics, Chemistry & Mathematics

INSTRUCTIONS FOR CANDIDATE

- The Answer Sheet is provided to you separately which is a machine readable Optical Mark Recognition (OMR). You have to mark your answers in the **OMR** by darkening bubble, as per your answer choice, by using black & blue ball point pen.
- 2. Total Questions to be Attempted 36. (Mathematics-12), (Physics-12), (Chemistry-12)

3. Marking Scheme:

- a. If darkened bubble is RIGHT answer: 4 Marks.
- b. If no bubble is darkened in any question: No Mark.
- c. If darkened bubble is WRONG answer: -1 Mark (Minus One Mark).
- 4. Think wisely before darkening bubble as there is negative marking for wrong answer.
- 5. If you are found involved in cheating or disturbing others then your OMR will be cancelled.
- 6. Do not put any stain on **OMR** and hand it over back properly to the invigilator.

MATHEMATICS (Single correct option +4, -1)

1.	If in the expansion of $\left(x^3 - \frac{1}{x^2}\right)^n$, $n \in N$, sum of the coefficients of x^5 and x^{10} is zero, then $n =$					
	(a.) 5	(b.)10	(c.)15	(d.)20		
2.	The value of $\frac{18^3 + 7^3 + 3 \cdot 18 \cdot 7 \cdot 25}{3^6 + 6 \cdot 243 \cdot 2 + 15 \cdot 181 \cdot 4 + 20 \cdot 27 \cdot 8 + 15 \cdot 9 \cdot 16 + 6 \cdot 3 \cdot 32 + 64}$, is					
	(a.) 10	(b.) 1	(c.) 2	(d.) 20		
3.	If the coefficients of x^2 and x^3 in the expansion of $(3 + ax)^9$ are the same, then the value of a ,					
	is					
	(a.) $-\frac{7}{9}$	(b.) $-\frac{9}{7}$	(c.) $\frac{7}{9}$	(d.) $\frac{9}{7}$		
4.	Two students while solving a quadratic equation in <i>x</i> , one copied the constant term					
	incorrectly and got the roots 3 and 2. The other copied the constant term coefficient of x^2					
	correctly as -6 and 1 respectively the correct roots are					
	(a.) 3, -2	(b.) -3, 2	(c.) -6, -1	(d.) 6, –1		
5.	If α , β are the roots of the equation $x^2 + \sqrt{\alpha} x + \beta = 0$, then the values of α and β are					
	$(a)\alpha = 1, \beta = -1$	(b)α=1,β=-2	(c)α=2,β=1	(d) $\alpha = 2, \beta = -2$		
6.	The number of real roots of the equation $ x ^2 - 3 x + 2 = 0$ is					
	(a)4	(b)3	(c)2	(d)1		
7.	On the set of human beings a relation <i>R</i> is defined as follows: " <i>aRb</i> iff <i>a</i> and <i>b</i> have the same					
	brother". Then R is					
	(a)Only reflexive	(b)Only symmetric	(c)Only transitive	(d)Equivalence		
8.	A and B are any two non-empty sets and A is proper subset of B. If $n(A) = 5$, then find the					
	minimum possible value of $n(A\Delta B)$					
	(a) Is 1		(b) Is 5			
	(c)Cannot be determined		(d) None of these			
9.	Let <i>L</i> be the set of all straight lines in the Euclidean plane. Two lines l_1 and l_2 are said to be					
	related by the relation R iff l_1 is parallel to l_2 . Then, the relation R is not					
	(a)Reflexive	(b)Symmetric	(c)Transitive	(d)None of these		
10.	If $\sec\theta\tan\theta = \sqrt{2}$, then $\theta = \pi$					
	$(a)n\pi + (-1)^n\frac{\pi}{4}, n\in$	$\equiv Z$	(b) $2 n \pi \pm \frac{\pi}{3}, n \in Z$	(c)		
	(d) $n \pi \pm \frac{2\pi}{3}, n \in Z$		(d) $n \pi - \frac{\pi}{4}$, $n \in Z$			

SPACE FOR ROUGH WORK

(c) $\sqrt{2}$ mg

SPACE FOR ROUGH WORK

5. A sphere of mass m is held between two smooth inclined walls. For sin $37^{\circ} = 3/5$, the normal reaction of the wall (2) is equal to -

(b) mg sin 74° (c) mg cos 74°

(d) None of these

- 6. A particle moves on a rough horizontal ground with some initial velocity say v_0 . If $3/4^{th}$ of its kinetic energy is lost in friction in time t_0 . Then coefficient of friction between the particle and the ground is -
 - (a) $\frac{v_0}{2gt_0}$ (b) $\frac{v_0}{4gt_0}$ (c) $\frac{3v_0}{4gt_0}$ (d) $\frac{v_0}{gt_0}$
- 7. A force of 100 N is applied on a block of mass 3 kg as shown in figure. The coefficient of friction between the surface and block is 1/4. The friction force acting on the block is –

(a) 15 N downwards(c) 20 N downwards

- (d) 20 N upwards
- 8. A vertical spring of force constant 100 N/m is attached with a hanging mass of 10 kg. Now an external force is applied on the mass so that the spring is stretched by additional 2 m. The work done by the force F is : $(g = 10 \text{ m/s}^2)$

SPACE FOR ROUGH WORK

9. A particle is given an initial speed u inside a smooth spherical shell of radius R = 1 m that it is just able to complete the circle. Acceleration of the particle when its velocity is vertical is -

- (a) g $\sqrt{10}$ (b) g (c) g $\sqrt{2}$ (d) 3g
- 10. A body starts slipping on a smooth track from point A and leaves the track from point B as shown. The part OB of track is straight at angle 37° with horizontal. Then the maximum height of body from ground when it is in air is (g = 10 m/s²)

(a) 16.8 m (b) 13.6 m (c) 11.8 m (d) None of these

11. A disc is performing pure rolling on a smooth stationary surface with constant angular velocity as shown in figure. At any instant, for the lower most point of the disc.

- (a) Velocity is v, acceleration is zero
- (b) Velocity is zero, acceleration is zero
- (c) Velocity is v, acceleration is $\frac{v^2}{P}$
- (d) Velocity is zero, acceleration is nonzero
- 12. Two blocks of mass 3 kg and 6 kg respectively are placed on a smooth horizontal surface. They are connected by a light spring of force constant k = 200 N/m. Initially the spring is unstretched. The indicated velocities are imparted to the blocks. The maximum extension of the spring will be –

SPACE FOR ROUGH WORK

CHE	CMISTRY					
(Sing	gle correct option +4, -	1)				
1.	Number of atoms in the following samples of substances is the largest in :					
	(a) 127.0g of iodine		(b) 48.0g of magnesium			
	(c) 71.0g of chlorine		(d) 4.0g of hydrogen			
2.	The concentrated sulphuric acid that is peddled commercially is 95% H ₂ SO ₄ by weight. If the					
	density of this commercial acid is 1.834 g cm ⁻³ , the molarity of this solution is :-					
	(a) 17.8 M	(b) 15.7 M	(c) 10.5 M	(d) 12.0 M		
3.	The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1 : 4. The ratio of					
	number of their molecule is :					
	(a) 1 : 8	(b) 3 : 16	(c) 1 : 4	(d) 7 : 32		
4.	If the kinetic energy of an electron is increased four times, the wavelength of the de-Broglie wave					
	associated with it would become					
	(a) Two times	(b) Half	(c) One fourth	(d) Four times		
5.	Ionisation energy of He ⁺ is 19.6×10^{-18} J atom ⁻¹ . The energy of the first stationary state (n = 1) of					
	Li ²⁺ is					
	(a)8.82×10 ⁻¹⁷ J atom ⁻¹		(b) $4.41 \times 10^{-16} \text{ J atom}^{-1}$			
	(c) -4.41×10^{-17} J atom ⁻¹		(d) -2.2×10^{-15} J atom ⁻¹			
6.	In the Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to					
	which one of the following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrogen					
	(a) $5 \rightarrow 2$	(b) $4 \rightarrow 1$	(c) $2 \rightarrow 5$	(d) $3 \rightarrow 2$		
7.	The increasing order of	f the ionic radii of the g	given isoelectronic spe	cies is?		
	(a) K^+ , S^{2-} , Ca^{2+} , Cl^-		(b) Cl^{-} , Ca^{2+} , K^{+} , S^{2-}			
	(c) S^{2-} , Cl^{-} , Ca^{2+} , K^{+}		(d) $Ca^{2+}, K^+, Cl^-, S^{2-}$			
8.	Which is the correct order of second ionization potential of C, N, O and F in the following?					
	(a) $O > F > N > C$	(b) $O > N > F > C$	(c) $C > N > O > F$	(d) F > O > N > C		
9.	According to the Periodic Law of elements, the variation in properties of elements is related to their.					
	(a) nuclear masses		(b) atomic numbers			
	(c) nuclear neutron-pro	ton number ratios	(d) atomic masses			
10.	Using MO theory, pred	lict which of the follow	ing species has the shortest bond length?			
	(a) O_2^{-}	(b) O_2^{2}	(c) O_2^{2+}	(d) O_2^+		
11.	The hybridisation of orbitals of N atom in NO_3^- , NO_2^+ , NH_4^+ are respectively:					
	(a) sp^2 , sp^3 , sp	(b) sp, sp^{3} , sp^{2}	(c) sp, sp ² , sp ³	(d) sp^2 , sp , sp^3		
12.	In which of the following pairs the two species are not isostructural?					
	(a) AlF_6^{3-} and SF_6	(b) CO_3^{2-} and NO_3^{-}	(c) PCl_4^+ and $SiCl_4$	(d) PF_5 and BrF_5		
		•••				

SPACE FOR ROUGH WORK