

BOTHRA ENTRANCE AND SCHOLARSHIP TEST

Class XI Studying Moving to Class XII

Physics, Chemistry & Biology

INSTRUCTIONS FOR CANDIDATE

- The Answer Sheet is provided to you separately which is a machine readable Optical Mark Recognition (OMR). You have to mark your answers in the **OMR** by darkening bubble, as per your answer choice, by using black & blue ball point pen.
- 2. Total Questions to be Attempted 60. (Physics-20), (Chemistry-20), (Biology-20).

3. Marking Scheme:

- a. If darkened bubble is RIGHT answer: 4 Marks.
- b. If no bubble is darkened in any question: No Mark.
- c. If darkened bubble is WRONG answer: -1 Mark (Minus One Mark).
- 4. Think wisely before darkening bubble as there is negative marking for wrong answer.
- 5. If you are found involved in cheating or disturbing others then your OMR will be cancelled.
- 6. Do not put any stain on **OMR** and hand it over back properly to the invigilator.

PHYSICS

(Single correct option +4, -1)

- 1. Which of the following physical quantities has neither dimensions nor unit ?
 - (a) angle (b)Luminous intensity
 - (c) coefficient of friction (d) current
- 2. The frequency of vibrations of a mass m suspended from a spring of spring constant k is given by $v = cm^{x} k^{y}$, where c is a dimensionless constant. The values of x and y are respectively.

(a)
$$\frac{1}{2}, \frac{1}{2}$$
 (b) $-\frac{1}{2}, -\frac{1}{2}$ (c) $\frac{1}{2}, -\frac{1}{2}$ (d) $-\frac{1}{2}, \frac{1}{2}$

3. Vector \vec{A} is shown in the figure. Negative of vector \vec{A} is given by –

4. In the relation $y = r \sin(\omega t - kx)$ the dimensions of $\frac{\omega}{k}$ are-

- (a) $[M^0 L^0 T^0]$ (b) $[M^0 L^1 T^{-1}]$ (c) $[M^0 L^0 T^1]$ (d) $[M^0 L^1 T^0]$
- 5. A projectile thrown with initial velocity $(a\hat{i} + b\hat{j})$ and its range is twice the maximum height attained by it then –

(a)
$$b = a/2$$
 (b) $b = a$ (c) $b = 2a$ (d) $b = 4a$

6. A particle is projected such that the horizontal range and vertical height are the same. Then the angle of projection is-

(a)
$$\pi/4$$
 (b) $\tan^{-1}(4)$ (c) $\tan^{-1}(1)$ (d) $\pi/3$

7. A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m. If a force P is applied at the free end of the rope, the force exerted by the rope on the block is -

(a)
$$\frac{Pm}{M+m}$$
 (b) $\frac{Pm}{M-m}$ (c) P (d) $\frac{PM}{M+m}$

SPACE FOR ROUGH WORK

The system of blocks and pulley as shown is released from rest. Then 8.

A particle is moving in a circular path and its acceleration vector is making an angle of 30° with the 13. velocity vector, then the ratio of centripetal acceleration to its tangential acceleration is -

(a)
$$\frac{1}{2}$$
 (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\sqrt{3}$

SPACE FOR ROUGH WORK

14. Two blocks A and B of mass m and 2m are connected by a massless spring of force constant k. They are placed on a smooth horizontal plane. Spring is stretched by an amount x and then released. The relative velocity of the blocks when the spring comes to its natural length is –

(a)
$$\left(\sqrt{\frac{3k}{2m}}\right)x$$
 (b) $\left(\sqrt{\frac{2k}{3m}}\right)x$ (c) $\sqrt{\frac{2kx}{m}}$ (d) $\sqrt{\frac{3km}{2x}}$

15. A disc is performing pure rolling on a smooth stationary surface with constant angular velocity as shown in figure. At any instant, for the lower most point of the disc.

- (a) Velocity is v, acceleration is zero
- (b) Velocity is zero, acceleration is zero
- (c) Velocity is v, acceleration is $\frac{v^2}{P}$
- (d) Velocity is zero, acceleration is nonzero
- 16. The coordinates of centre of mass of the following quarter circular arc is -

17. Ball 1 collides with an another identical ball 2 at rest as shown in figure. For what value of coefficient of restitution e, the velocity of second ball becomes two times that of 1 after collision ?

SPACE FOR ROUGH WORK

18. A block of mass m is pushed towards a movable wedge of mass 2m and height h with a velocity u. All surfaces are smooth. The minimum value of u for which the block will reach the top of the wedge is –

19. A uniform chain has a mass m and length λ . It is held on a frictionless table with one sixth of its length hanging over the edge. The work done is just pulling the hanging part back on the table is -

(a)
$$mg\frac{\ell}{72}$$
 (b) $\frac{mg\ell}{36}$ (c) $\frac{mg\ell}{12}$ (d) $\frac{mg\ell}{6}$

20. An open knife edge of mass M is dropped from a height h on a wooden floor. If the blade penetrates a distance s into the wood, the average resistance offered by the wood to the blade is:

(a) Mg	(b) $Mg\left(1+\frac{h}{s}\right)$	(c) $Mg\left(1-\frac{h}{s}\right)$	(d) $Mg\left(1+\frac{h}{s}\right)^2$
(a) Mg	(b) $Mg\left(1+\frac{h}{s}\right)$	(c) $Mg\left(1-\frac{h}{s}\right)$	(d) $Mg\left(1+\frac{h}{s}\right)$

CHEMISTRY

(Single correct option +4, -1)

- Carbon occurs in nature as a mixture of carbon 12 and carbon 13. The average atomic mass of carbon is 12.011. What is the percentage abundance of carbon-12 in nature?
 (a) 90.5%
 (b) 85.6%
 (c) 95.6%
 (d) 98.9%
- 2. A compound contains 4.07% H, 24.27%C and 71.65% Cl. Its molar mass is 98.96 gm. What is its empirical formula?
 - (a) CH_3Cl (b) C_2H_4Cl (c) C_2H_5Cl (d) CH_2Cl
- 3. A solution contains 1 mole of alcohol and 4 moles of water. The mole fraction of water and alcohol will be

(a) $\frac{1}{4}$ and $\frac{3}{4}$	(b) $\frac{1}{3}$ and $\frac{2}{3}$	(c) $\frac{1}{5}$ and $\frac{4}{5}$	(d) $\frac{4}{5}$ and $\frac{1}{5}$
-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------

4. The density of 3M solution of NaCl is 1.25 gm/ml. Calculate the molality of the solution.
(a) 2.0 m
(b) 2.3 m
(c) 3.0 m
(d) 2.79 m

SPACE FOR ROUGH WORK

5.	There are two common oxides of sulphur, one of which contains 50% oxygen by weight, the other almost exactly 60%. The weights of sulphur which combine with 1 g of O_2 (fixed) are in the ratio of-					
	(a) 1 : 1	(b) 2 : 1	(c) 2 : 3	(d) 3 : 2		
6.	K.E. of the electron is 4.55×10^{-25} J. Its de Brogile wavelength (approximately) is-					
	(a) 4700 Å	(b) 8300 Å	(c) 7275 Å	(d) 7400 Å		
7.	Which of the following	ng statements is not true?				
		(a) Lyman spectral series of hydrogen atom lies in the ultraviolet region of electromagnetic radiation.				
		(b) Balmer spectral series of hydrogen atom lies in the visible region of electromagnetic radiation.				
	• / •	ries of hydrogen atom lies	-	-		
0		series of hydrogen atom lie	_	-		
8.	For a given value of a number m, is given by		I, the number of allowed v	values of magnetic quantum		
	(a) ℓ + 1	(b) ℓ + 2	(c) $2\ell + 1$	(d) $2\ell + 2$		
9.		ng sets of quantum number				
	(a) $n = 2, \ell = 0, m = +$	-1 (b) n = 2, $\ell = 1, m = +1$	(c) $n = 2, \ell = 0, m = 0$	(d) $n = 2, \ell = 1, m = -1$		
10.	Which of the followir	ng has maximum number o	f unpaired electrons ?			
	(a) Mg^{2+}	(b) Ti^{3+}	(c) V^{3+}	(d) ${\rm Fe}^{2+}$		
11.	The electronic config	uration of an element is 1	s^2 , $2s^22p^6$, $3s^23p^3$. What is	s the atomic number of the		
	element which is just	below the above element in	n the periodic table			
	(a) 34	(b) 49	(c) 33	(d) 31		
12.		nic number 20 is placed in				
	(a) 4	(b) 3	(c) 2	(d) 1		
13.	Which one is the corr	ect order of the size of the	iodine species?			
	(a) $I > I^+ > I^-$	(b) $I > I^{-} > I^{+}$	(c) $I^+ > I^- > I$	(d) $\Gamma > I > I^+$		
14.	The electron affinities	s of N, O, S and Cl are as				
	(a) $N < O < S < C1$	(b) $O < N < Cl < S$	(c) $O \approx Cl \leq N \approx S$	(d) $O < S < Cl < N$		
15.	Which of the following	ng transitions involves max	imum amount of energy?			
	(a) $M^{-}(g) \longrightarrow M(g)$	(b) $M(g) \longrightarrow M^+(g)$	(c) $M^+(g) \longrightarrow M^{+2}(g)$	(d) $M^{+2}(g) \longrightarrow M^{+3}(g)$		
16.		Two elements X and Y have following electronic configurations, $X = 1s^2$, $2s^2$, $2p^6$, $3s^23p^6$, $4s^2$ and Y = $1s^2$, $2s^22p^6$, $3s^23p^5$. The compound formed by combination of X and Y is;				
	(m) 111 2	(~) **) * 2		(*) ***)		
	$= 1s^{-}, 2s^{-}2p^{-}, 3s^{-}3p^{-}.$ (a) XY ₂	(b) X_5Y_2	(c) X_2Y_5	; (d) XY ₅		

SPACE FOR ROUGH WORK

17.	Which oxide of nit	hich oxide of nitrogen is isoelectronic with CO ₂ ?				
	(a) NO ₂	(b) N ₂ O	(c) NO	(d) N ₂ O ₂		
18.	Which of the following shows iso-structural species?					
	(a) $\mathrm{NH_4}^+$ and $\mathrm{NH_2}^-$		(b) CH_3^- and CH_3^+			
	(c) SO_4^{2-} , PO_4^{3-} and	$d BF_4^-$	(d) NH_4^+ and NH_3			
19.			not show zero dipole moment?			
	(a) CH ₄	(b) CCl ₄	(c) CO_2	(d) CHCl ₃		
20.	The diamagnetic m	The diamagnetic molecules are				
	(a) B ₂ , C ₂ , N ₂	(b) O_2 , F_2 , N_2	(c) F_2 , C_2 , N_2	$(d) B_2, O_2^{2-} , N_2$		
BIO	LOGY					
(Sin	gle correct option +					
1.			pre-existing cells). Who g	ave this concept and		
	modified the cell th (a) Schleiden and S	•				
	(b) Virchow	John Wahim				
	(c) Robert Brown					
	(d) Leeuwenhoek					
2.	1 1 2					
	(a) ribosome					
	(b) mesosome (c) microvilli					
	(d) vacuoles					
3.		d within the membrane wi	th			
	· / -	-	drophobic tails towards ou	ıterside		
		tails towards outerside	1			
		outerside and tails towards tails towards innerside	s inside			
4.		er and Nicolson concept, c	ell membrane is			
т.	(a) solid	in and i vicebison concept, e	ten memorane 15			
	(b) quasifluid					
	(c) fluid					
	(d) solidified sheath					

SPACE FOR ROUGH WORK

5. Identify A to D in the diagrammatic representation of internal structure of cilia.

- (a) A-Interdoublet bridge, B-Central microtubule, C-Plasma membrane, D-Radial spoke
- (b) A-Plasma membrane, B-Central microtubule, C-Interdoublet bridge, D-Radial spoke
- (c) A-Plasma membrane, B-Interdoublet bridge, C-Central microtubule, D-Radial spoke
- (d) A-Plasma membrane, B-Interdoublet bridge, C-Radial spoke, D-Central microtubule 6. During which phase(s) of cell cycle, amount of DNA in a cell remains at 4C level if the initial amount is denoted as 2C?
 - (a) G_0 and G_1 (b) G_1 and S (c) Only G_2 (d) G_2 and M
 - Which of the following options gives the correct sequences of events during mitosis ?
 - (a) Condensation \rightarrow nuclear membrane disassembly \rightarrow crossing over \rightarrow segregation \rightarrow telophase
 - (b) Condensation \rightarrow nuclear membrane disassembly \rightarrow arrangement at equator \rightarrow centromere division \rightarrow segregation \rightarrow telophase
 - (c) Condensation \rightarrow crossing over \rightarrow nuclear membrane disassembly \rightarrow segregation \rightarrow telophase
 - (d) Condensation \rightarrow arrangement at equator \rightarrow centromere division \rightarrow segregation \rightarrow telophase
- 8. Given below is the representation of a certain event at a particular stage of a type of cell division. Which is this stage?

7.

(a) Prophase-I during meiosis

(b) Prophase-II during meiosis

(c) Prophase of mitosis

- (d) Both prophase and metaphase of mitosis
- 9. Arrange the following events of meiosis in correct sequences.
 - I. Crossing over. III. Terminalisation of chiasmata.
 - (a) II, I, IV and III
 - (c) I, II, III and IV

- II. Synapsis.
- IV. Disappearance of nucleolus.
- (b) II, I, III and IV
- (d) II, III, IV and I

SPACE FOR ROUGH WORK

- 10. Meiosis in diploid organisms results in
 - (a) production of gametes (b) reduction in the number of chromosomes
 - (c) introduction of variation (d) All of the above
- 11. A fatty acid has a carboxyl group attached to R group. The R group could be a/an
 - (a) methyl
 - (b) ethyl
 - (c) higher number of —CH₂ groups (1 to 19 carbons)
 - (d) All of the above
- 12. Which of the following secondary metabolites are used as drugs?
 - (a) Vinblastin and curcumin (b) Anthocyanin
 - (c) Gums and cellulose (d) Abrin and ricin
- 13. In the given structure 'A' represents

$$\begin{array}{c|c} HO - P \xrightarrow{\downarrow} OCH_2 O \\ OH \\ OH \end{array} \xrightarrow{N-base}$$

(a) ester bond (b) ionic bond (c) phosphate bond (d) glycosidic bond Identify, whether the given conditions are anabolic or

- 14. Identify, v catabolic.
 - I. Glucose \longrightarrow Lactic acid
 - II. Amino acids \longrightarrow Proteins
 - (a) I–Catabolic; II–Catabolic (b) I–Anabolic; II–Catabolic
 - (c) I–Catabolic; II–Anabolic (d) I–Anabolic; II–Anabolic
- 15. Amino acids have both an amino group and a carboxyl group in their structure. Which amongst the following is an amino acid?
 - (a) Formic acid (b) Glycerol (c) Glycolic acid (d) Glycine
- 16. Organisms which circulate water from their surroundings through their body cavities to facilitate the cells to exchange nutrients and waste substances are
 - (a) coelenterates (b) sponges (c) Both (a) and (b) (d) None of these
- 17. In birds and mammals, the oxygenated and deoxygenated blood is received by
 - (a) left and right atria
 - (b) left and right ventricles
 - (c) left atria and right ventricle
 - (d) left atria and left ventricle

SPACE FOR ROUGH WORK

- 18. ECG is graphical representation of
 - (a) rate of heartbeat
 - (b) volume of blood pumped
 - (c) ventricular contraction
 - (d) electrical activities of heart
- 19. Neural signals through the sympathetic nerves (ANS) can increase the rate of heartbeat by
 - (a) increasing heart output
 - (b) increasing the strength of ventricular contraction
 - (c) Both (a) and (b)
 - (d) increasing the contraction of atrium
- 20. Blood pressure in the mammalian aorta is maximum during
 - (a) systole of the left atrium
 - (b) diastole of the right ventricle
 - (c) systole of the left ventricle
 - (d) diastole of the right atrium